Factors That Can Influence Peritubular Capillary Reabsorption

T Pc ^ 0 Reabsorption

• T Arterial Pressure ^ T Pc T p ^ T Reabsorption

T Kf ^ T Reabsorption

Pc, peritubular capillary hydrostatic pressure; RA and RE, afferent and efferent arteriolar resistances, respectively; pc, peritubular capillary colloid osmotic pressure; pA, arterial plasma colloid osmotic pressure; FF, filtration fraction; Kf, peritubular capillary filtration coefficient.

The mechanisms by which changes in interstitial fluid hydrostatic and colloid osmotic pressures influence tubular reabsorption can be understood by examining the pathways through which solute and water are reabsorbed (Figure 27-16). Once the solutes enter the intercellular channels or renal interstitium by active transport or passive diffusion, water is drawn from the tubular lumen into the interstitium by osmosis. And once the water and solutes are in the interstitial spaces, they can either be swept up into the peritubular capillaries or diffuse back through the epithelial junctions into the tubular lumen. The so-called tight junctions between the epithelial cells of the proximal tubule are actually leaky, so that considerable amounts of sodium can diffuse in both directions through these junctions. With the normal high rate of peritubular capillary reabsorption, the net movement of water and solutes is into the peritubular capillaries with little backleak into the lumen of the tubule. However, when peri-tubular capillary reabsorption is reduced, there is increased interstitial fluid hydrostatic pressure and a tendency for greater amounts of solute and water to backleak into the tubular lumen, thereby reducing the rate of net reabsorption (refer again to Figure 27-16).

The opposite is true when there is increased peri-tubular capillary reabsorption above the normal level. An initial increase in reabsorption by the peritubular capillaries tends to reduce interstitial fluid hydrostatic pressure and raise interstitial fluid colloid osmotic pressure. Both of these forces favor movement of fluid and solutes out of the tubular lumen and into the inter-stitium; therefore, backleak of water and solutes into the tubular lumen is reduced, and net tubular reabsorption increases.

Thus, through changes in the hydrostatic and colloid osmotic pressures of the renal interstitium, the uptake of water and solutes by the peritubular capillaries is closely matched to the net reabsorption of water and solutes from the tubular lumen into the interstitium. Therefore, in general, forces that increase peritubular capillary reabsorption also increase reabsorption from the renal tubules. Conversely, hemodynamic changes that inhibit peritubular capillary reabsorption also inhibit tubular reabsorption of water and solutes.

Peritubular capillary

Normal

Interstitial fluid

Tubular cells

Lumen

Net reabsorption

Was this article helpful?

0 0
Brain Blaster

Brain Blaster

Have you ever been envious of people who seem to have no end of clever ideas, who are able to think quickly in any situation, or who seem to have flawless memories? Could it be that they're just born smarter or quicker than the rest of us? Or are there some secrets that they might know that we don't?

Get My Free Ebook


Responses

  • vittoria
    What factors encourage uptake by peritubular capillaries?
    3 years ago

Post a comment