Motor learning skills and the disablement model

A 1997 research agenda that emanated from a workshop focused on facilitating patient learning during medical rehabilitation proposed that "the effectiveness and efficiency of learning-oriented practices will likely be enhanced by well-formulated investigations grounded in available learning theory and research" (Fuhrer and Keith, 1998, p. 560). More recently others have argued for the need to investigate and better explain the specific ingredients of rehabilitation protocols including the conditions of practice that optimize learning and recovery (Whyte and Hart, 2003). A program that focuses on the learning of motor skills can take a "top-down approach" whereby the inability to perform a personal or societal role is identified first. Then, further evaluation and analysis determines the functional skills required to meet those roles and the impairments (strength, coordination, endurance, etc.) that are interfering with an individual's ability to perform these skills (Gordon, 2000). Such a model takes into account the levels of Nagi's model of disablement, including: pathology, impairment, functional limitation, and disability. For neurologic disorders in which motor control deficits are marked (e.g., stroke-hemiparesis), the underlying impairments require attention if functional ability is to improve (Sunderland and Tuke, 2005; Wolf et al., 2005). Emphasis on the underlying impairments, termed resources, in the top-down model allows the development of more efficient and flexible movement strategies that can be used in a variety of task and environmental contexts.

Task-specific training focused on improving the skill with which an individual performs motor tasks draws heavily upon the principles of learning derived from the cognitive neuroscience and movement science literature. Motor learning is a set of processes associated with "practice" or experience leading to relatively permanent changes in the capability for responding (Schmidt and Lee, 2005). Three key terms/phrases that are critical for determining optimal parameters and conditions of training are

"practice", "relatively permanent", and "capability". Amount of practice is the most important variable for motor skill learning (Schmidt and Lee, 2005). Equally important, however, is that the learner be actively involved in solving the motor problem during practice (Lee and Maraj, 1994; Gordon, 2000). Simple repetition of a task is not sufficient to increase skill or promote the associated cortical re-organization (Plautz et al., 2000). The learner must perform the task under conditions that require variations in speed, timing, and environmental conditions that require him/her to generate successful motor solutions. If the learner is challenged to assess task conditions and to prepare and generate an appropriate response over practice trials, the probability is greater that an ability is acquired to adapt those responses to the ever-changing circumstances of daily life. It is this ability to adapt that provides the individual with the capability to perform a task over time (relatively permanent change).

Was this article helpful?

0 0

Post a comment