Task scheduling

Individuals post-stroke generally need to learn or re-learn numerous tasks during rehabilitation. Optimal scheduling of to-be-learned items has been the subject of considerable behavioral research since early in the 20th century. The literature emphasizes two key principles of task scheduling: (1) spacing of trials is better than massing trials (for reviews see Lee and Genovese, 1988; Druckman and Bjork, 1991; Dempster, 1996; Donovan and Radosevich, 1999) and (2) a random task practice schedule is better than a blocked task practice schedule (for reviews see Magill and Hall, 1990; Brady, 2004) for the learning of motor skills in healthy adults. While there is limited research about how these principles apply to individuals post-stroke, the findings from these lines of research can be used to provide some guidance for clinicians and researchers as to the best way to structure practice for motor learning (Marley et al., 2000).

One of the most robust finding in this domain of study is the so-called "spacing effect" according to which distributed presentation of an item strongly increases the retention of learned material compared to massed presentations. In a massed practice schedule, there is typically little to no time between presentations of the same task (Fig. 7.1(a)). In a distributed practice schedule, the inter-trial interval between task presentations is longer than in a massed schedule, an arrangement that can persist for

Massed schedule

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Was this article helpful?

0 0

Post a comment