Diagnosis

Dorn Spinal Therapy

Spine Healing Therapy

Get Instant Access

In many patients with acute injury to the trachea, and to the cervical trachea in particular, clinical signs will strongly suggest the diagnosis. However, tracheobronchial injuries should be considered in every patient with severe trauma to the neck or chest in order to avoid overlooking any injuries. Bronchoscopy should be performed whenever the possibility of injury is suspected. With cervical injuries, anteroposterior and lateral radiographs of soft tissues of the neck as well as chest radiographs may reveal dissection of air in the cervical tissues up to the base of the skull or into the mediastinum (Figure 9-4). Mediastinal emphysema,

figure 9-4 Blunt tracheal fracture. The esophagus was also avulsed from the pharynx. A, Lateral cervical roentgenogram. Note dissection ofair throughout cervical tissues to base of skull. Oral contrast has diffused into the tissues. B, Computed tomography (CT) scan reveals air throughout cervical tissue planes at the level of thyroid and cricoid cartilages. C, CT section at the level of tracheal transection shows air anteriorly, with extravasated contrast behind.

figure 9-4 Blunt tracheal fracture. The esophagus was also avulsed from the pharynx. A, Lateral cervical roentgenogram. Note dissection ofair throughout cervical tissues to base of skull. Oral contrast has diffused into the tissues. B, Computed tomography (CT) scan reveals air throughout cervical tissue planes at the level of thyroid and cricoid cartilages. C, CT section at the level of tracheal transection shows air anteriorly, with extravasated contrast behind.

with cervical dissection of air and subcutaneous emphysema, is usually present in intrathoracic tracheal rupture. Pneumothorax, sometimes bilateral, will often be present unless there is pleural obliteration. Complete bronchial rupture may reveal the lung collapsed at the bottom of the thorax, when only the pulmonary vessels retain continuity. Partial but significant collapse, unresponsive or poorly responsive to suction, may present when bronchial mediastinal pleural investments are partially intact. At other times, the lung will fully expand on suction, sometimes without subsequent air leak, which may be clinically deceptive. Pleural obliteration may limit even mediastinal emphysema (Figure 9-5).

Laryngoscopy is necessary to assess possible damage in the uppermost airway. This is facilitated by the flexible nasopharyngoscope. In acute injury, accurate laryngeal assessment may be very difficult because of edema, hemorrhage, and tissue trauma. If the first manifestation of the injury is airway obstruction, initial treatment also serves as a diagnostic procedure. Bronchoscopy should be done early for direct visual-

figure 9-5 Variations in radiographic picture obtained following main bronchial rupture. A, Complete right main bronchial rupture with lung collapsed at the base ofhemithorax, since it remains connected to the hilum only by pulmonary vessels. Tension is indicated by mediastinal displacement. Hemothorax is present. B, Partial expansion of lung on pleural suction after right main bronchial fracture, because peribronchial tissues maintain a partially "intact" air channel to the lung. This presentation is most commonly seen. Note the mediastinal emphysema and air in the muscle planes. C, Chest roentgenogram of a 69-year-old woman, run over by a truck. Multiple bilateral rib fractures and unstable chest wall. Mediastinal shift to right. Pleural obliteration prevented pneumothorax. D, Same patient after partial atelectatic collapse of left lung. Air delineates the transected left main bronchus.

ization of the airway. Flexible bronchoscopy with an endotracheal tube threaded over it may be the method of choice (see Chapter 31, "Repair of Tracheobronchial Trauma", and Figure 10-1 in Chapter 10, "Tracheostomy: Uses, Varieties, Complications"). Pneumothorax may be severe or accompanied by tension and must be treated immediately.

If there is suspicion or any possibility of cervical spine injury, urgent airway assessment and establishment must be done with this concern in mind. Adequate splinting must be provided during radiographic examination. Intubation over a flexible bronchoscope avoids cervical flexion or extension. If that fails, urgent tracheostomy becomes necessary. This is one of the few remaining indications for emergency tracheostomy. Equipment for tracheostomy should be at hand when bronchoscopy is first attempted, in case of loss of airway during endoscopy. In a series of acute tracheal injuries, only 4 patients needed no intubation, whereas 11 required oral endotracheal intubation—2 with the aid of a flexible bronchoscope, 2 intubated through the open neck, and 2 with a rigid bronchoscope.14 Eight airways were controlled by tracheostomy. Computed tomography (CT) adds detail but is usually not critical to diagnosis, and it certainly should not be routinely obtained if the patient is unstable or might lose the airway (Figure 9-6).

In an urgent situation, sufficient information is usually at hand after endoscopy and on the x-rays to proceed to surgical treatment, unless there is strong indication for additional imaging such as angiography.

If esophageal injury is suspected, contrast esophagography is performed after the airway is secure, and other life-threatening injuries, such as aortic rupture, have been evaluated. A small amount of barium or Gastrografin is used. Contrast studies may fail to show esophageal injury. Therefore, rigid esophagoscopy is performed if cervical spine injury is absent. The proximity of a penetrating injury is sufficient to raise the question of esophageal injury.13 If the injury on the initial chest x-ray suggests the possibility of vascular injury, then a CT scan with contrast or, more definitively, angiography is advised to delineate the lesion precisely (Figure 9-7).

In injuries where diagnosis has been delayed or only an emergency tracheostomy was established, the larynx is first completely and carefully assessed. This is best done by an experienced otolaryngologist on the awake patient, so that glottic function is fully observed. Complete radiographic studies of the larynx and trachea are performed (see Chapter 4, "Imaging the Larynx and Trachea"). If indicated, esophagography is included (Figure 9-8). Endoscopic examination is next, made of all portions of the airway and of the esophagus if necessary. In many patients in whom treatment is delayed, cicatrization produces total discontinuity between the larynx or upper trachea and the distal trachea. Access to the lower airway is via tracheostomy only (Figure 9-9). Frequently, there will appear to be a long gap between the two ends of the airway. Since the distal end of a separated trachea drops into the mediastinum, whereas the upper segment remains fixed to the less figure 9-6 Computed tomography scan at and just below the carina showing a separated left main bronchus following blunt chest trauma (arrow). Massive emphysema is seen in all layers of the chest wall.

k v ^ 4 m [ Á

Was this article helpful?

0 0
Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook


Post a comment