Info

Thyroid Factor

The Natural Thyroid Diet

Get Instant Access

Adapted from Grillo HC and Mathisen DJ.1

Adapted from Grillo HC and Mathisen DJ.1

number of patients (7), the larynx was so extensively involved by a high tracheal tumor that salvage was impossible and laryngotracheal resection was performed (Figure 7-20). Eight staged resections were performed where primary reconstruction was not possible and where it was planned ultimately to reconnect the larynx to the distal trachea in secondary procedures. Since so few of these succeeded optimally, staged procedures were abandoned. Sixty-three percent of all SCCs were resected, as well as 75% of all ACCs and 90% of others. The high resectability rate of the last group was due to the large number of benign lesions (see Table 7-6). Resectability rates remained stable at 68% for SCC and 73% for ACC as the series grew.6

Principal contraindications to resection are 1) extensive linear involvement of the airway such that primary end-to-end resection would not be possible without excessive tension, 2) mediastinal invasion of non-resectable organs, or 3) remote metastases. Although palliative resection may be advisable in some patients with ACC or differentiated thyroid carcinoma, to remove a potentially obstructing lesion even in the face of pulmonary metastases, I usually prefer to embark upon tracheal resection and reconstruction where there is a chance of cure. This applies even more to carinal resection because of increased risks of major surgical morbidity and higher mortality (see Chapter 21, "Complications of Tracheal Reconstruction").

Emergency management of patients with severe obstruction is described in Chapter 19, "Urgent Treatment of Tracheal Obstruction." If resection and reconstruction is not deemed to be possible because of linear extent of the lesion, primary radiotherapy is employed (see Chapter 41, "Radiation Therapy in the Management of Tracheal Cancer"). Brachytherapy has, on occasion, been added to external beam irradiation in selected patients. In the presence of bulky tumor with extrinsic compression of the tracheal wall, often after failure of radiotherapy, a T tube or a solid or coated expandable stent may span the area of obstruction for a time (see Chapter 40, "Tracheal and Bronchial Stenting").

Surgical approaches (see Tables 7-6, 7-7) and techniques for resection are described in Part 2, "Therapeutic Techniques and Management" (see Chapters 23-25, 28, 29, 34). The differing distribution of tumors is highlighted by the fact that 9 of 41 (22%) patients undergoing primary resection and reconstruction for SCC underwent resection of the carina, whereas 28 of 50 (56%) patients who had ACC were treated by carinal resection. By the year 2002, these figures were 22% and 41%, respectively. Laryngeal release was used 7 times in 82 (8.5%) patients undergoing tracheal resection for tumor. It was earlier also used 5 times in those undergoing carinal resection. I have since concluded that it can be useful in carinal resection, only where a large portion of the trachea itself has been removed, since laryngeal release only assists in advancement of the upper half of the trachea. This was confirmed by Valesky and colleagues in anatomic studies.84 Hilar release, on the other hand, particularly the inferior portion of release at the level of the inferior pulmonary vein, was used in 12 of 32 (38%) patients undergoing transthoracic tracheal resection and 23 of 50 (46%) patients treated by carinal resection. Additional structures removed in these resections included a lobe of the thyroid, portions of the esophageal wall, and recurrent laryngeal nerve. Where extensive radiotherapy had been used prior to the operation, either remotely or recently, an omental pedicle flap was used to wrap the anastomosis (see Chapter 42, "The Omentum in Airway Surgery and Tracheal Reconstruction after Irradiation").

Gaissert and colleagues commenced review of the MGH experience with tracheal tumors to the year 2002.6 Figures cited here are therefore somewhat preliminary. In 40 years, 135 patients were treated for ACC and 135 for SCC. Overall resectability rates were 78% for ACC and 68% for SCC. Given that twice as many patients suffering from SCC were smokers, the significantly increased incidence of prior carcinoma of the lung (15%), larynx (7%), and other head and neck lesions (4%) is not surprising. The overall incidence of prior upper respiratory tract cancer in patients with SCC of the trachea was 27%. The principal reasons for nonresectability were extent of airway involvement (ACC 68%, SCC 67%) and extent of regional disease (ACC 23%, SCC 24%). Other causes were distant disease (ACC 6%, SCC 7%), medical contraindication (ACC 0, SCC 2%), and patient's choice (ACC 3%, SCC 0).

figure 7-20 Very extensive adenoid cystic carcinoma which prohibited salvage of the larynx in a 39-year-old man. Diagnosis had failed to be made at an initial presentation with hoarseness and a paralyzed vocal cord 2 years earlier. Now he had dysphagia, dyspnea on effort, but no hemoptysis. The extent of laryngeal involvement precluded any attempt to salvage it. The patient was considered a candidate for cervicomediastinal exenteration (laryngotrachealpharyngoesophageal resection with mediastinal tracheostomy and esophageal replacement). Endoscopic views. A, Laryngoscopy. Tumor invades the subglottis up to the conus elasticus and fills the posterior commissure (arrow). B, Esophagoscopy shows submucosal tumor invading the esophagus anteriorly. C, Tomogram. Anteroposterior view. Tumor encircles the subglottis, paralyzes the vocal cord, and invades the upper trachea (open arrow). The solid arrow marks the glottis. D, Computed tomography delineation of tumor. Tumor infiltration of the larynx. The arch of thyroid cartilage is anterior, the remnant ofcricoid posterior.

figure 7-20 (continued) E, Extension of tumor in the trachea, upper mediastinum, and around the esophagus. Carotid arteries are not invaded. F, Surgical specimen from another patient with adenoid cystic carcinoma, a 41-year-old man, viewed posteriorly. Tumor extends from the arytenoids downward. The esophagus was not involved. Total thyroidectomy, parathyroidectomy, and laryngotracheotomy were done. Because of the low level of mediastinal tracheostomy necessary, the brachiocephalic artery was divided and the omentum advanced. The patient later developed bone, lung, and liver metastases, which progressed slowly. He died from brain metastases 10 years later.

Was this article helpful?

0 0
Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook


Post a comment